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1 Y Combinator

1.1 Definition

The Y Combinator is defined as:
Y

∆
= λf.(λx.f(xx))(λx.f(xx))

And it has the fixed-point property:
YM =β M(YM)

This property is witnessed by the following β-reductions:

YM = (λf.(λx.f(xx))(λx.f(xx)))M

→ (λx.M(xx))(λx.M(xx))

→ M((λx.M(xx))(λx.M(xx)))

M(YM) = M((λf.(λx.f(xx))(λx.f(xx)))M)

→ M((λx.M(xx))(λx.M(xx)))

YM ↠ M((λx.M(xx))(λx.M(xx))) ↞ M(YM)

YM =β M(YM)

1.2 Recursive functions

Let’s consider a simple template for recursive functions:

f(x) =

{
b(x) if v(x)

g(x, f(h(x))) otherwise
(1)

where g, h, v, b are some other functions, loosely representing the operation for aggregating
the results (g), the operation to obtain the next recursion value (h), the verifying function
which decides whether to continue the recursion (v), and the base case function (b). This
will be referred to as the recursive function template (Eq. 1).
When we expand the function definition layer-by-layer (assuming v(x) does not evaluates to
true), we have:

f(x) = g(x, f(h(x))

= g(x, g(h(x), f(h(h(x))))

= g(x, g(h(x), g(h(h(x)), f(h(h(h(x))))))

. . .
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In pseudo-code, we can implement the function as:

Listing 1: Pseudo-code Template for Recursive Functions (Template 1)

func f(x) {

if v(x) {

return b(x)

} else {

return g(x, f(h(x)))

}

}

This will be referred to as the pseudo-code template for recursive functions.
A simple example of recursive function which fits the template is the factorial function:

fact(x) =

{
1 if x = 0

x× fact(x− 1) otherwise

We have the following mapping to the functions defined in the recursive function template
(Eq. 1):

f = fact

b(x) = 1

v(x) = (x = 0)

h(x) = x− 1

g(x, r) = x× r

This fits into our pseudo-code template as well:

func fact(x) {

if x = 0 {

return 1

} else {

return x * fact(x-1)

}

}

1.3 β-conversion

Let’s compare that to how the Y combinator undergoes β-conversion (non-normal order):

YF =β F (YF )

=β F (F (YF ))

=β F (F (F (YF )))

We can see that it allows some form of recursion in λ-calculus.

But how do we make use of it to implement more familiar forms of recursion? How can
we map recursive functions to λ-terms with the Y combinator?
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1.4 Using the Y Combinator

The trick in using the Y combinator, is to define the accompanying λ-term (F ) as a λ-
abstraction with two or more variables, with the first acting like the recursive function that
we are trying to define:

F
∆
= λfx⃗.M

However, this is still very abstract, and it is more useful by defining the λ-term in the
following form:

F
∆
= λfx⃗.If(V x⃗)(Bx⃗)(Gx⃗(f(Hx⃗)))

(see appendix for the definition of If and other common λ-terms)

To see how this helps us in defining recursive functions, let’s look at the β-conversion of
the Y combinator again, and this time with F defined in this specific form and an argument
(assuming that V x⃗ does not evaluates to True):

YFx⃗ =β F (YF )x⃗

=β If(V x⃗)(Bx⃗)(Gx⃗(YF (Hx⃗)))

=β Gx⃗(YF (Hx⃗))

=β Gx⃗(F (YF )(Hx⃗))

=β Gx⃗(G(H(x⃗))(YF (H(Hx⃗))))

=β Gx⃗(G(H(x⃗))(G(H(H(x⃗)))(YF (H(H(Hx⃗))))

You will notice, thanks to the fixed-point property of Y, this recursion matches exactly
our template for recursive functions (Eq. 1) and the pseudo-code template (Template 1) in
section 1.2. This means that we can define recursive functions in λ-calculus. In particular,
any function that fits the recursive function template or the pseudo-code template can be
defined in λ-calculus, by defining the accompanying λ-term in this specific form.

In the following sections, we will explore examples of how this knowledge can be used.

1.5 Primitive Recursion in λ-Calculus

Primitive recursion is defined in the following way [1]:

ρ(f, g)(x⃗, x)
∆
= h(x⃗, x) =

{
f(x⃗) if x = 0

g(x⃗, x− 1, h(x⃗, x− 1)) otherwise
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This is an instance of the recursive function template (Eq. 1) (using variables x⃗, x rather
than just x), once we substitute

h for f

f(x⃗) for b(x⃗, x)

(x = 0) for v(x⃗, x)

(x⃗, x− 1) for h(x⃗, x)

g(x⃗, x− 1, r) for g(x⃗, x, r)

And the pseudo-code template (Template 1):

func h(x⃗, x) {

if x = 0 {

return f(x⃗)
} else {

return g(x⃗,x-1, h(x⃗, x-1))

}

}

By assuming the existence of λ-terms If,Eq0,Pred (see appendix), which performs condi-
tional branching, checks if some λ-term is 0, and calculates the predecessor (subtract by 1
if larger than 0), and F,G which represents functions f, g, we can define primitive recursion
as λ−terms.

To see how to do this, we first define a λ-term in the specific form:

Φf,g
∆
= λhx⃗x.If(V ′x⃗x)(B′x⃗x)(G′x⃗x(h(H ′x⃗x)))

We then define each of the components as follows:

V ′x⃗x = Eq0 x (x = 0)

B′x⃗x = F x⃗ f(x⃗)

H ′x⃗x = (x⃗ (Pred x)) (x⃗, x− 1)

G′x⃗xr = G x⃗ (Pred x) r g(x⃗, x− 1, r)

We can then have primitive recursion represented as:

YΦf,g = Y(λhx⃗x.If (Eq0 x) (F x⃗) (G x⃗ (Pred x)(h x⃗ (Pred x))))

To clearly point out how this is going to perform primitive recursion as we have intended,
recall

F
∆
= λfx⃗.If(V x⃗)(Bx⃗)(Gx⃗(f(Hx⃗)))

YFx⃗ =β Gx⃗(G(H(x⃗))(G(H(H(x⃗)))(YF (H(H(Hx⃗))))

(under certain assumptions)
We can clearly see that the repeated application of terms G and H achieves the looping
(recursive) behavior that we are looking for: at every iteration, we first check if x is zero,
return f(x⃗) if yes, otherwise, we decrement x, call g(x⃗, x− 1, h(x⃗, x− 1)).
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1.6 Minimisation in λ-Calculus

Minimization is defined in the following way:

µf(x⃗)
∆
= the least x such that f(x⃗, x) = 0 and ∀n < x.f(x⃗, n) ↓ and f(x⃗, n) ̸= 0

From another angle, we can also define it as:

g(x⃗, x)
∆
=

{
x if f(x⃗, x) = 0

g(x⃗, x+ 1) otherwise

µf(x⃗)
∆
= g(x⃗, 0)

This allows us to easily define a pseudo-code implementation (Template 1):

func g(x⃗, x) {

if f(x⃗, x) = 0 {

return x

} else {

return g(x⃗, x+1)

}

}

func m(x⃗) {

return g(x⃗, 0)

}

and this fits the recursive function template (Eq. 1) by substituting:

g for f

x for b(x⃗, x)

(f(x⃗, x) = 0) for v(x⃗, x)

(x⃗, x+ 1) for h(x⃗, x)

r for g(x⃗, x, r)

Note that the auxiliary function g is recursive, and matches our templates for using Y
combinator. Therefore, we can define the function function g with the following λ-terms, by
following a similar pattern that we have seen in primitive recursion:

Ψf
∆
= λgx⃗x.If(V x⃗x)(Bx⃗x)(G′x⃗x(g(Hx⃗x)))

V x⃗x = Eq0 (F x⃗ x) (f(x⃗, x) = 0)

Bx⃗x = x x

Hx⃗x = (x⃗ (Succ x)) (x⃗, x+ 1)

G′x⃗xr = r r
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Therefore,

Ψf
∆
= λgx⃗x.If (Eq0 (F x⃗ x)) x (g x⃗ (Succ x))

G
∆
= YΨf

Finally, to define minimisation, we need to call function g(x⃗, 0):

µf
∆
= λx⃗.G x⃗ 0

= λx⃗.YΨf x⃗ 0

= λx⃗.Y(λgx⃗x.If (Eq0 (F x⃗ x)) x (g x⃗ (Succ x))) x⃗ 0

1.7 Revisiting Factorial

We have seen how to define higher-order recursions in λ-calculus, but do we have a more
concrete example?
Recall our earlier discussion on recursive functions (section 1.2): the factorial function is a
good example of a recursive function. So, let’s take that as an example.
Recall:

fact(x) =

{
1 if x = 0

x× fact(x− 1) otherwise

which matches the recursive function template (Eq. 1):

f = fact

b(x) = 1

v(x) = (x = 0)

h(x) = x− 1

g(x, r) = x× r

and in pseudo-code (Template 1):

func fact(x) {

if x = 0 {

return 1

} else {

return x * fact(x-1)

}

}

Again, we follow our previous examples, and we define

F
∆
= λfx.If(V x)(Bx)(Gx(f(Hx)))
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V x = Eq0 x (x = 0)

Bx = 1 1

Hx = Pred x x− 1

Gxr = Mult x r x× r

assuming we have λ-term Mult, which returns the Church encoding of the product of two
numbers, and others defined.
Putting them together:

Fact
∆
= YF

∆
= Y(λfx.If (Eq0 x) 1 (Mult x (f(Pred x))))

This time, since we have every term defined, we can perform β-conversion on these λ-terms
to verify the definition:

Fact 0 = YF 0

=β F (YF ) 0

=β (λfx.If (Eq0 x) 1 (Mult x (f(Pred x))))(YF ) 0

=β If (Eq0 0) 1 (Mult 0 ((YF )(Pred 0)))

=β 1

=β fact(0)

Fact 1 = YF 1

=β F (YF ) 1

=β If (Eq0 1) 1 (Mult 1 ((YF )(Pred 1)))

=β Mult 1 ((YF )(Pred 1))

=β Mult 1 (YF 0)

=β Mult 1 1

=β 1

=β fact(1)

Fact 2 = YF 2

=β F (YF ) 2

=β If (Eq0 2) 1 (Mult 2 ((YF )(Pred 2)))

=β Mult 2 ((YF )(Pred 2))

=β Mult 2 (YF 1)

=β Mult 2 1

=β 2

=β fact(2)
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Fact 3 = YF 3

=β F (YF ) 3

=β If (Eq0 3) 1 (Mult 3 ((YF )(Pred 3)))

=β Mult 3 ((YF )(Pred 3))

=β Mult 3 (YF 2)

=β Mult 3 2

=β 6

=β fact(3)

By observing these conversions, you can see how the Y combinator works in real-time.

To properly show that Fact represents the factorial function, we prove it by mathemati-
cal induction:

Base case: Fact 0 =β fact(0) (shown above)
Inductive case: Assume Fact k = YF k =β fact(k) for some k ∈ N

Fact k + 1 = YF k + 1

=β F (YF ) k + 1 fixed-point property of Y

=β If (Eq0 k + 1) 1 (Mult k + 1 ((YF )(Pred k + 1))) definition of F

=β Mult k + 1 ((YF )(Pred k + 1)) definition of If,Eq0

=β Mult k + 1 (YF k) definition of Pred

=β Mult k + 1 fact(k) induction hypothesis

=β (k + 1)× fact(k) definition of Mult

=β fact(k + 1) definition of fact

Therefore, ∀n ∈ N.Fact n =β fact(n)

1.8 Ackermann Function

One of the most famous recursive functions is the Ackermann function [2], because of its
rapid growth rate.
It is defined as:

ack(0, y) = y + 1

ack(x+ 1, 0) = ack(x, 1)

ack(x+ 1, y + 1) = ack(x, ack(x+ 1, y))

We can implement this as (Template 1):
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func ack(x,y) {

if x = 0 {

return y + 1

} else if y = 0 {

return ack(x - 1, 1)

} else {

return ack(x - 1, ack(x, y - 1))

}

}

This time, we have two conditional branches, and nested recursion. But as we see below, this
does not prevent us from reusing the template that we have proposed above, by extending
it:

A
∆
= λfxy.If(V xy)(Bxy)(If(V ′xy)(B′fxy)(Gfxy))

V xy = Eq0 x (x = 0)

Bxy = Succ y y + 1

V ′xy = Eq0 y (y = 0)

B′fxy = f (Pred x) 1 ack(x− 1, 1)

Gfxy = f (Pred x) (f x (Pred y)) ack(x− 1, ack(x, y − 1))

Note that we have added additional λ-terms to handle one more conditional branch, and
modified the template slightly for B′, G to let them be more general in order to handle the
additional and nested recursions.
Putting them together:

Ack
∆
= YA

=Y(λfxy.If(Eq0 x)(Succ y)(If(Eq0 y)(f (Pred x) 1)(f (Pred x) (f x (Pred y))))))

We can show that Ack represents the Ackermann function by nested mathematical induc-
tion, i.e. ∀x, y ∈ N.Ack x y =β ack(x, y):

Base case 1: ∀y ∈ N

Ack 0 y = YA 0 y

=β A(YA) 0 y fixed-point property of Y

=β If(Eq0 0)(Succ y)(If(Eq0 y)(YA (Pred 0) 1)(YA (Pred 0) (YA 0 (Pred y)))) definition of A

=β Succ y definition of If,Eq0

=β y + 1 definition of Succ

=β ack(0, y) definition of ack
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Induction Hypothesis 1: Assume for some x ∈ N,∀y ∈ N.Ack x y = YA x y =β ack(x, y)
Base case 2, consider x+ 1:

Ack x+ 1 0

= YA x+ 1 0

=β A(YA) x+ 1 0 property of Y

=β If(Eq0 x+ 1)(Succ 0)(If(Eq0 0)(YA (Pred x+ 1) 1)(YA (Pred x+ 1) (YA x+ 1 (Pred 0)))) definition of A

=β If(Eq0 0)(YA (Pred x+ 1) 1)(YA (Pred x+ 1) (YA x+ 1 (Pred 0))) definition of If,Eq0

=β YA (Pred x+ 1) 1 definition of If,Eq0

=β YA x 1 definition of Pred

=β ack(x, 1) Induction Hypothesis 1

=β ack(x+ 1, 0) definition of ack

Induction Hypothesis 2: Assume for some y ∈ N.Ack x+ 1 y = YA x+ 1 y =β ack(x+ 1, y)
Inductive case, consider x+ 1, y + 1:

Ack x+ 1 y + 1

=YA x+ 1 y + 1

=β A(YA) x+ 1 y + 1 property of Y

=β If(Eq0 x+ 1)(Succ y + 1)(If(Eq0 y + 1)

(YA (Pred x+ 1) 1)(YA (Pred x+ 1) (YA x+ 1 (Pred y + 1)))) definition of A

=β If(Eq0 y + 1)(YA (Pred x+ 1) 1)(YA (Pred x+ 1) (YA x+ 1 (Pred y + 1))) definition of If,Eq0

=β YA (Pred x+ 1) (YA x+ 1 (Pred y + 1)) definition of If,Eq0

=β YA x (YA x+ 1 (Pred y + 1)) definition of Pred

=β YA x (YA x+ 1 y) definition of Pred

=β YA x ack(x+ 1, y) Induction Hypothesis 2

=β ack(x, ack(x+ 1, y) Induction Hypothesis 1

=β ack(x+ 1, y + 1) definition of ack

Therefore, ∀x, y ∈ N.Ack x y =β ack(x, y)
You can see that since we define our λ-term by following the definition closely, the proof for
correct representation of the Ackermann function is straight-forward.

(As an interesting side note, there exists an λ-term which represents the Ackermann function

without involving the Y combinator: Ack′
∆
= λx. x(λf y.y f(f 1))Succ)

1.9 Summary

After we have seen all these examples of using the Y Combinator, we should be able to
recognise functions that can be defined in λ-calculus.
The following gives a correspondence between different templates that we have used through-
out this set of notes:
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Recursive Function

f(x) =

{
b(x) if v(x)

g(x, f(h(x))) otherwise

Pseudo-code

func f( x ) {
i f v( x ) {

r e turn b(x )
} e l s e {

r e turn g(x , f(h(x ) ) )
}

}

λ-calculus

F
∆
= Y(λfx.If(V x)(Bx)(Gx(f(Hx))))

1.10 Author’s Comments

I hope that this set of notes helps clear up the mystery and potential confusion about the
Y combinator. However, this is only one of many possible interpretations and uses of the
Y combinator, and the discussion is surrounding the conversion of recursive functions of a
particular form to λ-terms.

This was written based on the teaching materials of the 2021-2022 Computation Theory
course (https://www.cl.cam.ac.uk/teaching/2122/CompTheory/) taught by Prof Andrew
Pitts for the Part IB Computer Science Tripos at the University of Cambridge, and with
the intention to complement the materials. However, I hope this can complement any other
teaching materials on this topic.

I am supervising Part IB students for this course in 2021-2022.

1.11 Disclaimer

This work can be distributed for educational purposes only, with explicit attribution to the
author by giving appropriate credit. The sole author, Chi Ian Tang, retains all relevant legal
rights unless explicitly stated. The author offers the work as-is and as-available, and makes
no representations or warranties of any kind. To the extent possible, in no event will the
author be liable on any legal theory or otherwise for any losses, costs, expenses, or damages
arising out of the use of the this work, even if the author has been advised of the possibility
of such losses, costs, expenses, or damages. For any other uses or enquiries, please contact
the author at cit27@cl.cam.ac.uk.
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A Common λ-terms
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n
∆
= λ f x . fn x

If
∆
= λ b x y . b x y

True
∆
= λ x y . x

False
∆
= λ x y . y

Eq0
∆
= λ x .x(λy.False)True

Pair
∆
= λ x y f . f x y

Fst
∆
= λ p.p True

Snd
∆
= λ p.p False

PredInc
∆
= λ f p. Pair (f(Fst p))(Fst p)

Pred
∆
= λ n f x. Snd (n (PredInc f))(Pair n n))

Mult
∆
= λ m n f x. m (n f) x
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