Group Supervised Learning: Extending Self-Supervised Learning to Multi-Device Settings

Yash Jain*1. Chi lan Tang*2. Chulhong Min3. Fahim Kawsar3. Akhil Mathur3.

¹Indian Institute of Technology, Bombay. ²University of Cambridge. ³Nokia Bell Labs, Cambridge. *Equal Contribution

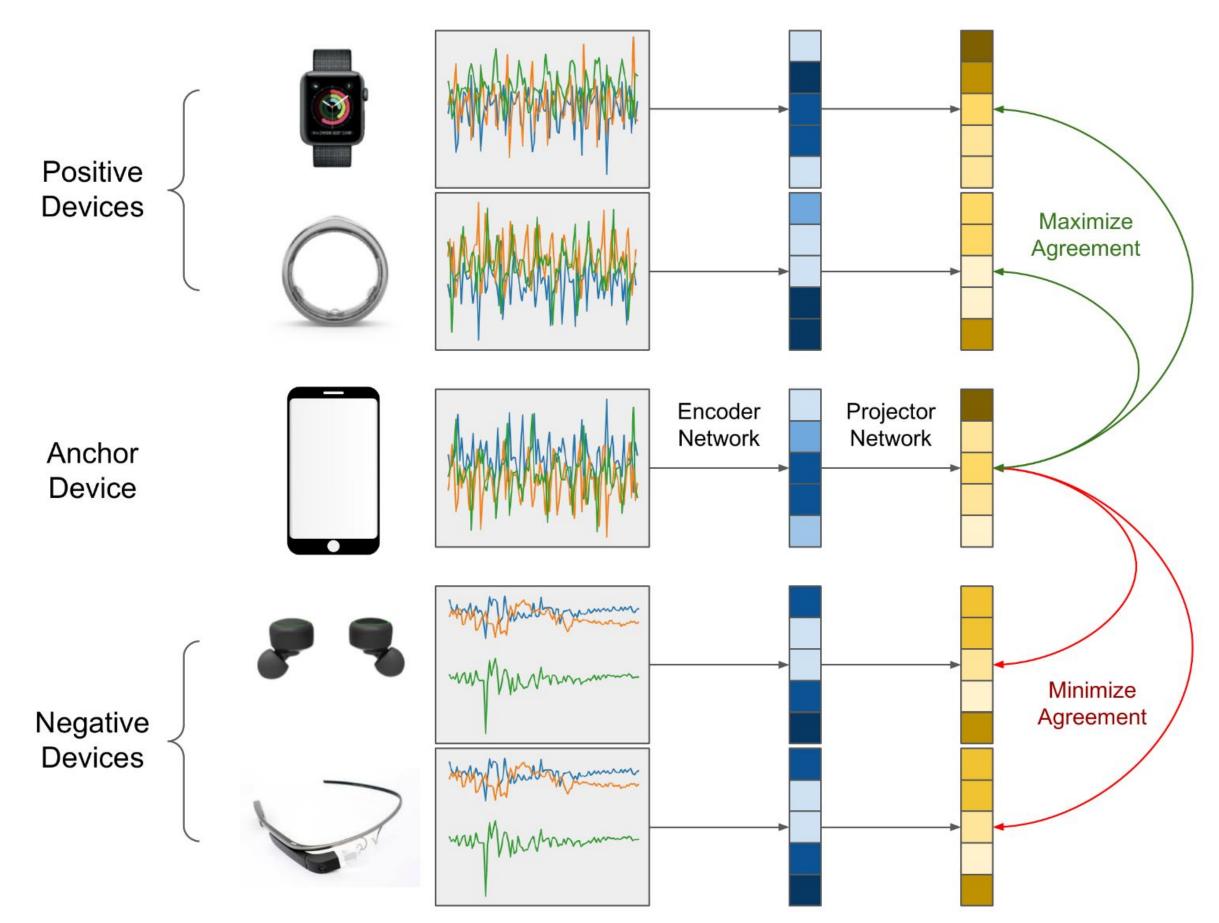
HIGHLIGHTS

- 1. Proposed a <u>new problem setting</u>, <u>TSMDS</u>, which exists in many domains in the real world but has not been thoroughly explored yet.
- 2. <u>A novel framework, GSL</u>, addressing the TSMDS problem, utilizing the <u>principles of contrastive</u> learning in a group setting.
- 3. Early results demonstrate that GSL <u>outperforms</u> <u>supervised and semi-supervised</u> training baselines proposed in the HAR literature by as high as 0.15 in F-1 score.

PROBLEM DEFINITION: TSMDS

- Time-Synchronous Multi-Device System
- **Given**: <u>Time-aligned</u> unlabeled data samples from K devices including an anchor device
- **Goal**: Leverage the time-aligned, unlabeled multi-device datasets to <u>learn a feature extractor that can generate</u> <u>effective feature representations</u> for anchor device

METHODOLOGY: Group-supervised learning (GSL)



- **Group-supervised learning.** A <u>contrastive self-supervised learning framework</u> which extends contrastive learning to a setting with groups of time-aligned devices
- **Key intuition.** Take the time-aligned samples from devices similar to anchor device, and pull them closer to it in the embedding space while pushing samples from dissimilar devices away
- **Group Supervised Contrastive Loss.** We train the model using a novel loss function called Group Supervised Contrastive Loss, which is an extension of the standard contrastive loss function but compatible with multiple positive and negative samples

$$\mathcal{L}_{GSL} = \frac{\sum_{i=0}^{|D^{+}|} \exp\left(\sin\left(z^{0}, z_{i}^{+}\right) / \tau\right)}{\left(\frac{\sum_{i=0}^{|D^{+}|} \exp\left(\sin\left(z^{0}, z_{i}^{+}\right) / \tau\right)}{+\sum_{j=0}^{|D^{-}|} \exp\left(\sin\left(z^{0}, z_{j}^{-}\right) / \tau\right)}\right)}$$

RESULTS

Method	GSL	SSL	Supervised
Proportion of data	$\leq 75\%$	$\leq 75\%$	100%
OPP - Back	0.769	0.612	0.698
OPP - Left Lower Arm	0.783	0.736	0.756
OPP - Left Shoe	0.732	0.706	0.700
OPP - Right Shoe	0.722	0.735	0.726
OPP - Right Upper Arm	0.831	0.599	0.681
RW - Chest	0.906	0.788	0.899
RW - Forearm	0.852	0.839	0.833
RW - Head	0.834	0.834	0.788
RW - Shin	0.891	0.886	0.885
RW - Thigh	0.899	0.866	0.879
RW - Upper Arm	0.876	0.862	0.857
RW - Waist	0.916	0.808	0.887

Table 1. Comparison of classification performance (F1-micro scores) between *GSL* and other training pipelines on two HAR datasets (OPP - Opportunity, RW - RealWorld).

- **Datasets:** RealWorld, Opportunity
- Baselines: Fully-supervised training, SimCLR Contrastive Training for HAR (SSL) [1]
- **Takeaway**: GSL outperformed the other baselines in the vast majority of cases, with a performance gain compared to the second-best pipeline as <u>high as 0.15 in F1-score</u>.

